SPSS online Teil 2

Auswahl eines geeigneten Tests zum Vergleich von Daten: - welcher Art sind die Daten (nominal, ordinal, metrisch,...) <u>Nominal</u>: ein geeigneter Test bei nominalen Daten ist z.B. der Chi-Quadrat-Test (vgl. Kreuztabellen im Kapitel Datenbeschreibung).

<u>Ordinal</u>: die Tests von den nominalen Daten dürfen auch verwendet werden, man verzichtet aber auf Informationen, die die Daten hergeben. Empfehlenswert sind i.d.R. sog. **nicht-parametrische Tests**, die meist auf Rängen beruhen.

<u>Metrisch</u>: sind die Daten normalverteilt (und varianzhomogen), dürfen sog. **parametrische Tests** verwendet werden; sind sie dies nicht, verwendet man **nicht-parametrische** Verfahren.

Dann besteht auch die Frage nach dem geeigneten Testverfahren für den Vergleich:

- Hat man eine Datenreihe, bei der man untersuchen möchte, ob sie von einem bekannten Wert abweicht → Einstichproben-Test (T-Test bei NV, sonst Mann-Whitney-U Test (entspricht Wilcoxon-Test))
- Hat man eine gepaarte Stichprobe (z.B. vorher/ nachher Messungen, wiederholte Messung an einer Versuchseinheit) → Test für Stichproben mit paarigen Werten (T-Test bei NV, sonst MWU/ Wilcoxon Test)
- Hat man zwei Datenreihen (ordinal oder metrisch), zwischen denen man einen Zusammenhang vermutet → Korrelationsanalyse
- Hat man einen Wert in unterschiedlichen Gruppen gemessen und möchte Gruppenunterschiede aufzeigen → Test für unabhängige Stichproben (bei 2 Gruppen: T-Test bei NV, sonst MWU- Test; bei >2 Gruppen ANOVA bei NV, sonst Kruskal-Wallis-Test)

Eir

Einfache Testverfahren

<u>Beispiel</u>: Unterscheiden sich Jungen und Mädchen hinsichtlich des Ausatemstroms nach 75%iger Ausatmung (fef75)?

Der fef75 ist metrisch, also prüfen wir, ob dieser normalverteilt ist: Analysieren → Deskriptive Statistiken → Explorative Datenanalyse Abhängige Variable: fef75, Faktorenliste: sex

<u>Auswertung</u>: Beide **Q-Q-plots** zeigen deutliche Abweichung von der Normalverteilung (Punkte weichen von Linie ab)

Die **Histogramme** zeigen eine rechtsschiefe (*"Schiefe"-Wert >> 0*) und steilgipflige (*"Kurtosis"-Wert >>0*) Verteilung.

Ein weiterer Hinweis auf eine Abweichung von der Normalverteilung ist ein deutlicher Unterschied zwischen Mittelwert und Median (s. Tabelle Deskriptive St., hier findet man auch die Schiefe und Kurtosis-Werte)

Man würde hier also nicht von normalverteilten Stichproben ausgehen, das Ergebnis des **Shapiro-Wilk** Tests bestätigt dies (p-Wert < 0,05).

!!!Beachten: Anwendung des zentralen Grenzwertsatzes wäre möglich!!!

Wir wählen einen nichtparametrischen Test:

Analysieren → Nichtparametrische Tests → unabhängige Stichproben. Testvariable ist "fef75", Gruppierungsvariable ist "sex".

SPSS verwendet den Mann-Whitney-U-Test (entspricht Wilcoxon-Test) für den Vergleich der zwei Stichproben.

<u>Ergebnis</u>: Der p-Wert von 0,414 ist deutlich über dem Signifikanzniveau von 0,05, daher können keine geschlechterbedingten Unterschiede hinsichtlich des fef75 festgestellt werden.

<u>Beispiel</u>: Unterscheiden sich Jungen und Mädchen hinsichtlich der Körpergröße ?

Werte auf NV testen: Analysieren → Deskriptive Statistik → Explorative Datenanalyse Visuelle Beurteilung zeigt ungefähr Normalverteilung, auch wenn das Ergebnis des Shapiro-Wilk Tests dagegen spricht, würden wir hier

ein parametrisches Verfahren wählen.

Analysieren → Mittelwerte vergleichen → T-Test bei unabhängigen Stichproben

Bei der Gruppierungsvariable noch die Gruppen definieren (1 und 2) (T-Test geht immer nur für zwei Gruppen!).

Das Ergebnis sieht folgendermaßen aus:

Sind Varianzen gleich (s. Levene-Test, Signifikanz >0,2), nimmt man das Ergebnis der oberen Zeile (Student's T-Test).

Sind Varianzen ungleich (Levene-Test, Signifikanz <0,2) nimmt man die untere Zeile (T-Test nach Welch).

Hier (Levene <0,2) würde man also das Ergebnis der unteren Zeile nehmen: "Mädchen und Jungen unterscheiden sich signifikant hinsichtlich der Körpergröße (p-Wert < 0.001)".

Vergleich eines Merkmals zwischen >2 Gruppen: Daten in den Gruppen normalverteilt und varianzhomogen? **NEIN:**

Analysieren → Nicht-parametrische Tests → unabhängige Stichproben, das Programm verwendet automatisch den Kruskal-Wallis Test.

<u>Beispiel</u>: Unterscheidet sich die Vitalkapazität (fvc) der Kinder in den drei Wohngebieten (zone)? Analysieren → Nicht-parametrische Tests → unabhängige Stichproben, Gruppierungsvariable zone, Testvariable fvc.

HypothesentestübersichtNullhypotheseTestSig.EntscheidungDie Verteilung von fvc ist über die
Kategorien von Umweltbelastung
am Wohnort identisch.Kruskal-
Wallis-Test
bei
unabhängig
en
Stichproben,533Nullhypothe
se
beibehalten

Asymptotische Signifikanzen werden angezeigt. Das Signifikanzniveau ist , 05.

In diesem Fall kann also kein Unterschied zwischen den Wohngebieten hinsichtlich der Vitalkapazität festgestellt werden (p-Wert > 0.05).

Э Е

Einfache Testverfahren

Vergleich eines Merkmals zwischen >2 Gruppen: Daten in den Gruppen normalverteilt und varianzhomogen? JA:

Analysieren \rightarrow Mittelwerte vergleichen \rightarrow Einfaktorielle Varianzanalyse

<u>Beispiel</u>: Zeigen die Gruppen mit unterschiedlicher Anzahl an Vorerkrankungen (Anz_Vorerkr) Unterschiede im max. Ausatemstrom pef?

Vorarbeit 1: "balanciertes Design": da nur sehr wenige Fälle mit 3 und 4

Vorerkrankungen existieren, werden diese mit der Gruppe "2 Vorerkrankungen" zusammengefasst: **Transformieren → Umcodieren in andere Variablen**, neue Variable soll ANZ3 heißen; man möchte insgesamt die Gruppen 0, 1 und 2 erhalten.

ta Umcodieren in and	lere Variablen: Alte und neue Werte 🛛 🛛 🗙
Alter Wert Wert: Systemdefiniert fehlend System- oder benutzerdefiniert fehlende Werte Bereich: Bereich: Bereich, KLEINSTER bis Wert: Bereich, Wert bis <u>QRÖSSTER:</u> Alte anderen Werte	Neuer Wert Wert Systemdefiniert fehlend Alte Werte kogieren Alt> Neu: 2 thru 4> 2 ELSE> Copy Ändern Entferren Ausgabe der Variablen als Zeichenfolgen Breite: Num. Zeichenfolgen in Zahlen umwandeln (5'->5)
Weiter	Abbrechen Hilfe

<u>Vorarbeit 2</u>: Die pef Werte sind nicht normalverteilt. Um dies zu erreichen, kann man die Daten transformieren, z.B. über eine Logarithmierung:

Dann untersucht man auf NV: Analysieren → Deskriptive Statistiken → Explorative Datenanalyse, abhängige Variable log_pef, Faktor ANZ3

Einfache Testverfahren

Analysieren → Mittelwerte vergleichen → Einfaktorielle Varianzanalyse. Testvariable log_pef, Faktor ANZ3.

Der p-Wert von 0,042 zeigt, dass signifikante Unterschiede zwischen den Gruppen hinsichtlich des log_pef Wertes vorliegen.

Welche Gruppen genau unterscheiden sich voneinander?

\rightarrow Post-hoc Test:

Zurück zu der Analyse, bei Schaltfläche "Post hoc" geeigneten Test auswählen.

In unserem Fall würde man z.B. den Bonferroni-Test verwenden können. Dieser zeigt signifikante Unterschiede nur zwischen den Gruppen 0 und 2 (p-Wert 0.039).

Übung 3

Folgender Versuch soll ausgewertet werden:

Datenarchiv des Instituts für Statistik und des SFB 386

Vasokonstriktion

Beschreibung des Datensatzes

-

Seitenanfang

Die Datei enthält binäre Daten. Drei Versuchspersonen atmeten bestimmte Luftmengen in verschiedenen Geschwindigkeiten ein. In einigen Fällen konnte daraufhin eine sog. Vasokonstriktion (von den Nerven gesteuerte Verengung der Blutgefäße) an deren Haut festgestellt werden. Ziel der Studie ist es, einen Zusammenhang zwischen Atmung und Vasokonstriktion aufzuzeigen. Die drei Versuchspersonen wiederholten diesen Test 9, 8 bzw. 22 mal, so daß die Datei insgesamt 39 Beobachtungen enthält.

Variablenbeschreibung

Seitenanfang

vol	Eingeatmete Luftmenge
rate	Geschwindigkeit, mit der die Luft eingeatmet wurde
vaso	Zustand der Blutgefäße
	1 : es wurde keine Vasokonstriktion beobachtet 2 : es wurde Vasokonstriktion beobachtet

Übung 3

- 1) Öffnen Sie die Excel-Datei "Vaso.xlsx" in SPSS
- 2) Überprüfen und vervollständigen Sie die Variablenübersicht
- 3) Führen Sie deskriptive Analyseverfahren durch: wie häufig treten bei der Variable "vaso" 1 und 2 auf. In welchem Bereich liegen die Werte von "vol" und "rate" (Spannweite)? Sind die Werte plausibel?
- 4) Erzeugen Sie Grafiken zu "vol" und "rate", um die Unterschiede in den Werten bei den beiden "vaso"-Gruppen zu zeigen.
- 5) Kann statistisch ein Unterschied zwischen den beiden Gruppen mit/ ohne Vasokonstriktion abgesichert werden bei den Werten der Variablen "vol" und "rate"?

Exkurs: Mehrfachantworten

In Fragebögen finden sich häufig Mehrfachantworten, d.h. bei einer Frage können mehrere Kreuze gesetzt werden. Jede Antwortmöglichkeit muss in SPSS als eigene Variable angelegt werden, es gibt dann wieder die Möglichkeit, diese als Mehrfachantwortset zusammenzufassen.

Im Atemwegsdatensatz bieten die "Vorerkrankungsfragen" die Möglichkeit, diese zusammenzufassen, um sie so zusammen auswerten zu können.

> Beachten: historisch bedingt gibt es zwei unterschiedliche Wege, Mehrfachantwortsets zu definieren!

Х

Exkurs: Mehrfachantworten

the Mehrfachantwortsets

Daten → Mehrfachantwortsets definieren. Diese Sets können dann z.B. für Diagramme verwendet werden.

Variablenkodierung: hier Dichotomien, gezählt werden soll der Wert "1", also "ja"

Exkurs: Mehrfachantworten

Analysieren \rightarrow Mehrfachantworten \rightarrow Variablen-Sets definieren.

Nach Definition eines Sets (Dialogfenster quasi genauso wie letzte Folie) kann man sich dann unter dem gleichen Menüpunkt Häufigkeiten und Kreuztabellen zu den erstellten Variablensets ausgeben lassen.

Beispiel:

		к	reuztabelle ra	auva*\$Voerkr ^a			
			Allergische Atemwegserk rankung	Kehlkopfentzü ndung	häufiger Schnupfen	häufiger Husten	Gesamt
Vater Raucher	nein	Anzahl	146	134	205	118	603
		Innerhalb rauva%	24,2%	22,2%	34,0%	19,6%	
	ja	Anzahl	41	33	77	43	194
		Innerhalb rauva%	21,1%	17,0%	39,7%	22,2%	
Gesamt		Anzahl	187	167	282	161	797

Prozentsätze und Gesamtwerte beruhen auf den Antworten.

a. Es sind nicht genug (weniger als 2) Mehrfachantworten-Gruppen für eine Paarbildung vorhanden. Die Prozentsätze beruhen auf den Antworten, es wird jedoch keine Paarbildung durchgeführt.

b. Dichotomie-Gruppe tabellarisch dargestellt bei Wert 1.

Exkurs 2: Fragebögen

Der folgende (fiktive!) Fragebogen soll in SPSS ausgewertet werden

Q1 (<u>Frage 1</u>): Einfachantwort, man braucht eine Zeile in SPSS. Messung kategorisch, also Kategorie 1-5 möglich.

Q2 <u>Frage 2:</u> Mehrfachantwort möglich, man braucht also pro Abfrage (hier: Stadt) eine Spalte in SPSS (hier 7). Antwortmöglichkeiten sind nein (=0) und ja (=1).

Exkurs 2: Fragebögen

Q3: In welchem Maß treffen diese Aus	ssagen auf Trifft voll zu	Sie zu?	Trifft überhaup
Ich reise gerne			
Ich mag Sport			
Alleine fühle ich mich unwohl	E		
Ich mag heißes Wetter		G	
Ich trinke regelmäßig Alkohol			
Ich lese gerne.			
Q4: Wie groß sind Sie? Angaben in c	m		
Kõrpergrõße in cm			
Q5: Was ist Ihr Beruf?			
Bezeichnung			

<u>Q3 (Frage 3):</u> beinhaltet 6 Abfragen mit jeweils 5 Antwortkategorien, es werden also 6 Zeilen in SPSS benötigt. Hier als Wertebeschriftung "1= trifft voll zu" bis "5=trifft überhaupt nicht zu".

Q4 (<u>Frage 4</u>): offene Antwort, Angabe ist metrisch, also Skalenniveau.

<u>Q5 (Frage 5):</u> auch offene Antwort, aber nominal mit Zeichenfolge.

17 Exkurs 2: Fragebögen, Übung

- 1. Erstellen Sie in der Datei Fragebogen.sav eine neue Variable "Ausland", diese soll die Summe der im Ausland bereisten Städte (Paris, Madrid), Frage Q2, wider spiegeln.
- 2. Wie häufig wurden die einzelnen Städte bereist (Frage Q2) (Mehrfachantwortset!)?
- Erstellen Sie eine neue Variable "fitness". Diese soll bei allen vorab "2" betragen. Wenn Q3_2 mit 1 oder 2 beantwortet wurde erfolgt eine Aufwertung auf "3", wenn Q3_5 mit 1 oder 2 beantwortet wurde erfolgt eine Abwertung um 1 des vorherigen Wertes.
- 4. Fügen Sie die Antwortmöglichkeit "weiß nicht" (6) bei den Fragen zu Q3 ein. Errechnen Sie den sinnigen (!) Durchschnittswert (?Mittelwert) für Q3_1 und Q3_2. Stellen Sie Q3_1 als Balkendiagramm dar.
- 5. Sie möchten die "Antwortverweigerer" besser erkennen. Erstellen Sie eine Variable, in der von Q3_1 und Q3_2 alle fehlenden Werte (Antwort=6 und fehlend) zusammengefasst werden.
- 6. Erstellen Sie eine Kreuztabelle der Einkommensgruppe zu der Anzahl der im Ausland besuchten Städte. Können Sie einen Trend/Zusammenhang erkennen?